Magnetic interactions in cubic-, hexagonal- and trigonal-barium iron oxide fluoride, BaFeO2F.

نویسندگان

  • Oliver Clemens
  • José F Marco
  • Michael F Thomas
  • Susan D Forder
  • Hongbin Zhang
  • Simon Cartenet
  • Anais Monze
  • Paul A Bingham
  • Peter R Slater
  • Frank J Berry
چکیده

(57)Fe Mössbauer spectra have been recorded from the hexagonal (6H)- and trigonal (15R)- modifications of BaFeO2F and are compared with those previously recorded from the cubic form of BaFeO2F. The spectra, recorded over a temperature range from 15 to 650 K show that all of the iron in all the compounds is in the Fe(3+) state. Spectra from the 6H- and 15R-modifications were successfully fitted with components that were related to the Fe(1) and Fe(2) structural sites in the 6H variant and to the Fe(1), Fe(2) and Fe(3) structural sites in the 15R form. The magnetic ordering temperatures were determined as 597  ±  3 K for 6H-BaFeO2F and 636  ±  3 K for 15R-BaFeO2F. These values are surprisingly close to the value of 645  ±  5 K determined for the cubic form. The magnetic interactions in the three forms are compared with a view to explaining this similarity of magnetic ordering temperature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and assembly of barium-doped iron oxide nanoparticles and nanomagnets.

A facile organic-phase synthesis of monodisperse barium-doped iron oxide (Ba-Fe-O) nanoparticles (NPs) is reported. The Ba-Fe-O NPs can be converted into hexagonal barium ferrite NPs at 700 °C, showing strong ferromagnetic properties with H(c) reaching 5260 Oe and M(s) at 54 emu g(-1). Moreover, the Ba-Fe-O NPs can be assembled into densely packed magnetic arrays, providing a unique model syste...

متن کامل

Enhanced dielectric properties of poly(vinylidene fluoride) composites filled with nano iron oxide-deposited barium titanate hybrid particles

We report enhancement of the dielectric permittivity of poly(vinylidene fluoride) (PVDF) generated by depositing magnetic iron oxide (Fe3O4) nanoparticles on the surface of barium titanate (BT) to fabricate BT-Fe3O4/PVDF composites. This process introduced an external magnetic field and the influences of external magnetic field on dielectric properties of composites were investigated systematic...

متن کامل

Magnetic iron oxide nanoparticles, Polyethylene glycol, Surfactant, Superparamagnetic, Chemical co-precipitation

In this study, magnetic iron oxide nanoparticles (Fe3O4) with the size range of 20-30 nm were prepared by the modified controlled chemical co-precipitation method from the solution of ferrous/ferric mixed salt-solution in alkaline medium. In this process polyethylene glycol was used as a surfactant to prevent the solution from agglomeration. The prepared magnetic nanoparticles were characterize...

متن کامل

Evaluation of Antibacterial Properties of Magnetic Iron Oxide Nanoparticles Synthesized using Echinops Persicus Extract Coated with Chloramphenicol

Introduction: The use of plants is one of the most effective methods for the synthesis of nanoparticles based on green chemistry. The magnetic properties of nanoparticles let the attached drugs conduct by a magnetic field in the body. This study aimed to use the magnetic iron oxide nanoparticles synthesized via green chemistry as a carrier for the chloramphenicol drug delivery system.   Materi...

متن کامل

Strain-Induced Extrinsic High-Temperature Ferromagnetism in the Fe-Doped Hexagonal Barium Titanate

Diluted magnetic semiconductors possessing intrinsic static magnetism at high temperatures represent a promising class of multifunctional materials with high application potential in spintronics and magneto-optics. In the hexagonal Fe-doped diluted magnetic oxide, 6H-BaTiO3-δ, room-temperature ferromagnetism has been previously reported. Ferromagnetism is broadly accepted as an intrinsic proper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of physics. Condensed matter : an Institute of Physics journal

دوره 28 34  شماره 

صفحات  -

تاریخ انتشار 2016